我的世界小游戏使用方法:

移动

前进:w,后退:s,向左:a,向右:d,环顾四周:鼠标,跳起:空格键,切换飞行模式:tab;

选择建筑材料

砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击

esc退出程序。

完整程序包请通过文末地址下载,程序运行截图如下:

from __future__ import division
import sys
import math
import random
import time
from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import texturegroup
from pyglet.window import key, mouse
ticks_per_sec = 60
# size of sectors used to ease block loading.
sector_size = 16
walking_speed = 5
flying_speed = 15
gravity = 20.0
max_jump_height = 1.0 # about the height of a block.
# to derive the formula for calculating jump speed, first solve
#  v_t = v_0 + a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. this gives:
#  t = - v_0 / a
# use t and the desired max_jump_height to solve for v_0 (jump speed) in
#  s = s_0 + v_0 * t + (a * t^2) / 2
jump_speed = math.sqrt(2 * gravity * max_jump_height)
terminal_velocity = 50
player_height = 2
if sys.version_info[0] >= 3:
xrange = range
def cube_vertices(x, y, z, n):
""" return the vertices of the cube at position x, y, z with size 2*n.
"""
return [
x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
]
def tex_coord(x, y, n=4):
""" return the bounding vertices of the texture square.
"""
m = 1.0 / n
dx = x * m
dy = y * m
return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
def tex_coords(top, bottom, side):
""" return a list of the texture squares for the top, bottom and side.
"""
top = tex_coord(*top)
bottom = tex_coord(*bottom)
side = tex_coord(*side)
result = []
result.extend(top)
result.extend(bottom)
result.extend(side * 4)
return result
texture_path = 'texture.png'
grass = tex_coords((1, 0), (0, 1), (0, 0))
sand = tex_coords((1, 1), (1, 1), (1, 1))
brick = tex_coords((2, 0), (2, 0), (2, 0))
stone = tex_coords((2, 1), (2, 1), (2, 1))
faces = [
( 0, 1, 0),
( 0,-1, 0),
(-1, 0, 0),
( 1, 0, 0),
( 0, 0, 1),
( 0, 0,-1),
]
def normalize(position):
""" accepts `position` of arbitrary precision and returns the block
containing that position.
parameters
----------
position : tuple of len 3
returns
-------
block_position : tuple of ints of len 3
"""
x, y, z = position
x, y, z = (int(round(x)), int(round(y)), int(round(z)))
return (x, y, z)
def sectorize(position):
""" returns a tuple representing the sector for the given `position`.
parameters
----------
position : tuple of len 3
returns
-------
sector : tuple of len 3
"""
x, y, z = normalize(position)
x, y, z = x // sector_size, y // sector_size, z // sector_size
return (x, 0, z)
class model(object):
def __init__(self):
# a batch is a collection of vertex lists for batched rendering.
self.batch = pyglet.graphics.batch()
# a texturegroup manages an opengl texture.
self.group = texturegroup(image.load(texture_path).get_texture())
# a mapping from position to the texture of the block at that position.
# this defines all the blocks that are currently in the world.
self.world = {}
# same mapping as `world` but only contains blocks that are shown.
self.shown = {}
# mapping from position to a pyglet `vertextlist` for all shown blocks.
self._shown = {}
# mapping from sector to a list of positions inside that sector.
self.sectors = {}
# simple function queue implementation. the queue is populated with
# _show_block() and _hide_block() calls
self.queue = deque()
self._initialize()
def _initialize(self):
""" initialize the world by placing all the blocks.
"""
n = 80 # 1/2 width and height of world
s = 1 # step size
y = 0 # initial y height
for x in xrange(-n, n + 1, s):
for z in xrange(-n, n + 1, s):
# create a layer stone an grass everywhere.
self.add_block((x, y - 2, z), grass, immediate=false)
self.add_block((x, y - 3, z), stone, immediate=false)
if x in (-n, n) or z in (-n, n):
# create outer walls.
for dy in xrange(-2, 3):
self.add_block((x, y + dy, z), stone, immediate=false)
# generate the hills randomly
o = n - 10
for _ in xrange(120):
a = random.randint(-o, o) # x position of the hill
b = random.randint(-o, o) # z position of the hill
c = -1 # base of the hill
h = random.randint(1, 6) # height of the hill
s = random.randint(4, 8) # 2 * s is the side length of the hill
d = 1 # how quickly to taper off the hills
t = random.choice([grass, sand, brick])
for y in xrange(c, c + h):
for x in xrange(a - s, a + s + 1):
for z in xrange(b - s, b + s + 1):
if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
continue
if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
continue
self.add_block((x, y, z), t, immediate=false)
s -= d # decrement side lenth so hills taper off
def hit_test(self, position, vector, max_distance=8):
""" line of sight search from current position. if a block is
intersected it is returned, along with the block previously in the line
of sight. if no block is found, return none, none.
parameters
----------
position : tuple of len 3
the (x, y, z) position to check visibility from.
vector : tuple of len 3
the line of sight vector.
max_distance : int
how many blocks away to search for a hit.
"""
m = 8
x, y, z = position
dx, dy, dz = vector
previous = none
for _ in xrange(max_distance * m):
key = normalize((x, y, z))
if key != previous and key in self.world:
return key, previous
previous = key
x, y, z = x + dx / m, y + dy / m, z + dz / m
return none, none
def exposed(self, position):
""" returns false is given `position` is surrounded on all 6 sides by
blocks, true otherwise.
"""
x, y, z = position
for dx, dy, dz in faces:
if (x + dx, y + dy, z + dz) not in self.world:
return true
return false
def add_block(self, position, texture, immediate=true):
""" add a block with the given `texture` and `position` to the world.
parameters
----------
position : tuple of len 3
the (x, y, z) position of the block to add.
texture : list of len 3
the coordinates of the texture squares. use `tex_coords()` to
generate.
immediate : bool
whether or not to draw the block immediately.
"""
if position in self.world:
self.remove_block(position, immediate)
self.world[position] = texture
self.sectors.setdefault(sectorize(position), []).append(position)
if immediate:
if self.exposed(position):
self.show_block(position)
self.check_neighbors(position)
def remove_block(self, position, immediate=true):
""" remove the block at the given `position`.
parameters
----------
position : tuple of len 3
the (x, y, z) position of the block to remove.
immediate : bool
whether or not to immediately remove block from canvas.
"""
del self.world[position]
self.sectors[sectorize(position)].remove(position)
if immediate:
if position in self.shown:
self.hide_block(position)
self.check_neighbors(position)
def check_neighbors(self, position):
""" check all blocks surrounding `position` and ensure their visual
state is current. this means hiding blocks that are not exposed and
ensuring that all exposed blocks are shown. usually used after a block
is added or removed.
"""
x, y, z = position
for dx, dy, dz in faces:
key = (x + dx, y + dy, z + dz)
if key not in self.world:
continue
if self.exposed(key):
if key not in self.shown:
self.show_block(key)
else:
if key in self.shown:
self.hide_block(key)
def show_block(self, position, immediate=true):
""" show the block at the given `position`. this method assumes the
block has already been added with add_block()
parameters
----------
position : tuple of len 3
the (x, y, z) position of the block to show.
immediate : bool
whether or not to show the block immediately.
"""
texture = self.world[position]
self.shown[position] = texture
if immediate:
self._show_block(position, texture)
else:
self._enqueue(self._show_block, position, texture)
def _show_block(self, position, texture):
""" private implementation of the `show_block()` method.
parameters
----------
position : tuple of len 3
the (x, y, z) position of the block to show.
texture : list of len 3
the coordinates of the texture squares. use `tex_coords()` to
generate.
"""
x, y, z = position
vertex_data = cube_vertices(x, y, z, 0.5)
texture_data = list(texture)
# create vertex list
# fixme maybe `add_indexed()` should be used instead
self._shown[position] = self.batch.add(24, gl_quads, self.group,
('v3f/static', vertex_data),
('t2f/static', texture_data))
def hide_block(self, position, immediate=true):
""" hide the block at the given `position`. hiding does not remove the
block from the world.
parameters
----------
position : tuple of len 3
the (x, y, z) position of the block to hide.
immediate : bool
whether or not to immediately remove the block from the canvas.
"""
self.shown.pop(position)
if immediate:
self._hide_block(position)
else:
self._enqueue(self._hide_block, position)
def _hide_block(self, position):
""" private implementation of the 'hide_block()` method.
"""
self._shown.pop(position).delete()
def show_sector(self, sector):
""" ensure all blocks in the given sector that should be shown are
drawn to the canvas.
"""
for position in self.sectors.get(sector, []):
if position not in self.shown and self.exposed(position):
self.show_block(position, false)
def hide_sector(self, sector):
""" ensure all blocks in the given sector that should be hidden are
removed from the canvas.
"""
for position in self.sectors.get(sector, []):
if position in self.shown:
self.hide_block(position, false)
def change_sectors(self, before, after):
""" move from sector `before` to sector `after`. a sector is a
contiguous x, y sub-region of world. sectors are used to speed up
world rendering.
"""
before_set = set()
after_set = set()
pad = 4
for dx in xrange(-pad, pad + 1):
for dy in [0]: # xrange(-pad, pad + 1):
for dz in xrange(-pad, pad + 1):
if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
continue
if before:
x, y, z = before
before_set.add((x + dx, y + dy, z + dz))
if after:
x, y, z = after
after_set.add((x + dx, y + dy, z + dz))
show = after_set - before_set
hide = before_set - after_set
for sector in show:
self.show_sector(sector)
for sector in hide:
self.hide_sector(sector)
def _enqueue(self, func, *args):
""" add `func` to the internal queue.
"""
self.queue.append((func, args))
def _dequeue(self):
""" pop the top function from the internal queue and call it.
"""
func, args = self.queue.popleft()
func(*args)
def process_queue(self):
""" process the entire queue while taking periodic breaks. this allows
the game loop to run smoothly. the queue contains calls to
_show_block() and _hide_block() so this method should be called if
add_block() or remove_block() was called with immediate=false
"""
start = time.perf_counter()
while self.queue and time.time()- start < 1.0 / ticks_per_sec:
self._dequeue()
def process_entire_queue(self):
""" process the entire queue with no breaks.
"""
while self.queue:
self._dequeue()
class window(pyglet.window.window):
def __init__(self, *args, **kwargs):
super(window, self).__init__(*args, **kwargs)
# whether or not the window exclusively captures the mouse.
self.exclusive = false
# when flying gravity has no effect and speed is increased.
self.flying = false
# strafing is moving lateral to the direction you are facing,
# e.g. moving to the left or right while continuing to face forward.
#
# first element is -1 when moving forward, 1 when moving back, and 0
# otherwise. the second element is -1 when moving left, 1 when moving
# right, and 0 otherwise.
self.strafe = [0, 0]
# current (x, y, z) position in the world, specified with floats. note
# that, perhaps unlike in math class, the y-axis is the vertical axis.
self.position = (0, 0, 0)
# first element is rotation of the player in the x-z plane (ground
# plane) measured from the z-axis down. the second is the rotation
# angle from the ground plane up. rotation is in degrees.
#
# the vertical plane rotation ranges from -90 (looking straight down) to
# 90 (looking straight up). the horizontal rotation range is unbounded.
self.rotation = (0, 0)
# which sector the player is currently in.
self.sector = none
# the crosshairs at the center of the screen.
self.reticle = none
# velocity in the y (upward) direction.
self.dy = 0
# a list of blocks the player can place. hit num keys to cycle.
self.inventory = [brick, grass, sand]
# the current block the user can place. hit num keys to cycle.
self.block = self.inventory[0]
# convenience list of num keys.
self.num_keys = [
key._1, key._2, key._3, key._4, key._5,
key._6, key._7, key._8, key._9, key._0]
# instance of the model that handles the world.
self.model = model()
# the label that is displayed in the top left of the canvas.
self.label = pyglet.text.label('', font_name='arial', font_size=18,
x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
color=(0, 0, 0, 255))
# this call schedules the `update()` method to be called
# ticks_per_sec. this is the main game event loop.
pyglet.clock.schedule_interval(self.update, 1.0 / ticks_per_sec)
def set_exclusive_mouse(self, exclusive):
""" if `exclusive` is true, the game will capture the mouse, if false
the game will ignore the mouse.
"""
super(window, self).set_exclusive_mouse(exclusive)
self.exclusive = exclusive
def get_sight_vector(self):
""" returns the current line of sight vector indicating the direction
the player is looking.
"""
x, y = self.rotation
# y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
# is 1 when looking ahead parallel to the ground and 0 when looking
# straight up or down.
m = math.cos(math.radians(y))
# dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
# looking straight up.
dy = math.sin(math.radians(y))
dx = math.cos(math.radians(x - 90)) * m
dz = math.sin(math.radians(x - 90)) * m
return (dx, dy, dz)
def get_motion_vector(self):
""" returns the current motion vector indicating the velocity of the
player.
returns
-------
vector : tuple of len 3
tuple containing the velocity in x, y, and z respectively.
"""
if any(self.strafe):
x, y = self.rotation
strafe = math.degrees(math.atan2(*self.strafe))
y_angle = math.radians(y)
x_angle = math.radians(x + strafe)
if self.flying:
m = math.cos(y_angle)
dy = math.sin(y_angle)
if self.strafe[1]:
# moving left or right.
dy = 0.0
m = 1
if self.strafe[0] > 0:
# moving backwards.
dy *= -1
# when you are flying up or down, you have less left and right
# motion.
dx = math.cos(x_angle) * m
dz = math.sin(x_angle) * m
else:
dy = 0.0
dx = math.cos(x_angle)
dz = math.sin(x_angle)
else:
dy = 0.0
dx = 0.0
dz = 0.0
return (dx, dy, dz)
def update(self, dt):
""" this method is scheduled to be called repeatedly by the pyglet
clock.
parameters
----------
dt : float
the change in time since the last call.
"""
self.model.process_queue()
sector = sectorize(self.position)
if sector != self.sector:
self.model.change_sectors(self.sector, sector)
if self.sector is none:
self.model.process_entire_queue()
self.sector = sector
m = 8
dt = min(dt, 0.2)
for _ in xrange(m):
self._update(dt / m)
def _update(self, dt):
""" private implementation of the `update()` method. this is where most
of the motion logic lives, along with gravity and collision detection.
parameters
----------
dt : float
the change in time since the last call.
"""
# walking
speed = flying_speed if self.flying else walking_speed
d = dt * speed # distance covered this tick.
dx, dy, dz = self.get_motion_vector()
# new position in space, before accounting for gravity.
dx, dy, dz = dx * d, dy * d, dz * d
# gravity
if not self.flying:
# update your vertical speed: if you are falling, speed up until you
# hit terminal velocity; if you are jumping, slow down until you
# start falling.
self.dy -= dt * gravity
self.dy = max(self.dy, -terminal_velocity)
dy += self.dy * dt
# collisions
x, y, z = self.position
x, y, z = self.collide((x + dx, y + dy, z + dz), player_height)
self.position = (x, y, z)
def collide(self, position, height):
""" checks to see if the player at the given `position` and `height`
is colliding with any blocks in the world.
parameters
----------
position : tuple of len 3
the (x, y, z) position to check for collisions at.
height : int or float
the height of the player.
returns
-------
position : tuple of len 3
the new position of the player taking into account collisions.
"""
# how much overlap with a dimension of a surrounding block you need to
# have to count as a collision. if 0, touching terrain at all counts as
# a collision. if .49, you sink into the ground, as if walking through
# tall grass. if >= .5, you'll fall through the ground.
pad = 0.25
p = list(position)
np = normalize(position)
for face in faces: # check all surrounding blocks
for i in xrange(3): # check each dimension independently
if not face[i]:
continue
# how much overlap you have with this dimension.
d = (p[i] - np[i]) * face[i]
if d < pad:
continue
for dy in xrange(height): # check each height
op = list(np)
op[1] -= dy
op[i] += face[i]
if tuple(op) not in self.model.world:
continue
p[i] -= (d - pad) * face[i]
if face == (0, -1, 0) or face == (0, 1, 0):
# you are colliding with the ground or ceiling, so stop
# falling / rising.
self.dy = 0
break
return tuple(p)
def on_mouse_press(self, x, y, button, modifiers):
""" called when a mouse button is pressed. see pyglet docs for button
amd modifier mappings.
parameters
----------
x, y : int
the coordinates of the mouse click. always center of the screen if
the mouse is captured.
button : int
number representing mouse button that was clicked. 1 = left button,
4 = right button.
modifiers : int
number representing any modifying keys that were pressed when the
mouse button was clicked.
"""
if self.exclusive:
vector = self.get_sight_vector()
block, previous = self.model.hit_test(self.position, vector)
if (button == mouse.right) or \
((button == mouse.left) and (modifiers & key.mod_ctrl)):
# on osx, control + left click = right click.
if previous:
self.model.add_block(previous, self.block)
elif button == pyglet.window.mouse.left and block:
texture = self.model.world[block]
if texture != stone:
self.model.remove_block(block)
else:
self.set_exclusive_mouse(true)
def on_mouse_motion(self, x, y, dx, dy):
""" called when the player moves the mouse.
parameters
----------
x, y : int
the coordinates of the mouse click. always center of the screen if
the mouse is captured.
dx, dy : float
the movement of the mouse.
"""
if self.exclusive:
m = 0.15
x, y = self.rotation
x, y = x + dx * m, y + dy * m
y = max(-90, min(90, y))
self.rotation = (x, y)
def on_key_press(self, symbol, modifiers):
""" called when the player presses a key. see pyglet docs for key
mappings.
parameters
----------
symbol : int
number representing the key that was pressed.
modifiers : int
number representing any modifying keys that were pressed.
"""
if symbol == key.w:
self.strafe[0] -= 1
elif symbol == key.s:
self.strafe[0] += 1
elif symbol == key.a:
self.strafe[1] -= 1
elif symbol == key.d:
self.strafe[1] += 1
elif symbol == key.space:
if self.dy == 0:
self.dy = jump_speed
elif symbol == key.escape:
self.set_exclusive_mouse(false)
elif symbol == key.tab:
self.flying = not self.flying
elif symbol in self.num_keys:
index = (symbol - self.num_keys[0]) % len(self.inventory)
self.block = self.inventory[index]
def on_key_release(self, symbol, modifiers):
""" called when the player releases a key. see pyglet docs for key
mappings.
parameters
----------
symbol : int
number representing the key that was pressed.
modifiers : int
number representing any modifying keys that were pressed.
"""
if symbol == key.w:
self.strafe[0] += 1
elif symbol == key.s:
self.strafe[0] -= 1
elif symbol == key.a:
self.strafe[1] += 1
elif symbol == key.d:
self.strafe[1] -= 1
def on_resize(self, width, height):
""" called when the window is resized to a new `width` and `height`.
"""
# label
self.label.y = height - 10
# reticle
if self.reticle:
self.reticle.delete()
x, y = self.width // 2, self.height // 2
n = 10
self.reticle = pyglet.graphics.vertex_list(4,
('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
)
def set_2d(self):
""" configure opengl to draw in 2d.
"""
width, height = self.get_size()
gldisable(gl_depth_test)
viewport = self.get_viewport_size()
glviewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
glmatrixmode(gl_projection)
glloadidentity()
glortho(0, max(1, width), 0, max(1, height), -1, 1)
glmatrixmode(gl_modelview)
glloadidentity()
def set_3d(self):
""" configure opengl to draw in 3d.
"""
width, height = self.get_size()
glenable(gl_depth_test)
viewport = self.get_viewport_size()
glviewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
glmatrixmode(gl_projection)
glloadidentity()
gluperspective(65.0, width / float(height), 0.1, 60.0)
glmatrixmode(gl_modelview)
glloadidentity()
x, y = self.rotation
glrotatef(x, 0, 1, 0)
glrotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
x, y, z = self.position
gltranslatef(-x, -y, -z)
def on_draw(self):
""" called by pyglet to draw the canvas.
"""
self.clear()
self.set_3d()
glcolor3d(1, 1, 1)
self.model.batch.draw()
self.draw_focused_block()
self.set_2d()
self.draw_label()
self.draw_reticle()
def draw_focused_block(self):
""" draw black edges around the block that is currently under the
crosshairs.
"""
vector = self.get_sight_vector()
block = self.model.hit_test(self.position, vector)[0]
if block:
x, y, z = block
vertex_data = cube_vertices(x, y, z, 0.51)
glcolor3d(0, 0, 0)
glpolygonmode(gl_front_and_back, gl_line)
pyglet.graphics.draw(24, gl_quads, ('v3f/static', vertex_data))
glpolygonmode(gl_front_and_back, gl_fill)
def draw_label(self):
""" draw the label in the top left of the screen.
"""
x, y, z = self.position
self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
pyglet.clock.get_fps(), x, y, z,
len(self.model._shown), len(self.model.world))
self.label.draw()
def draw_reticle(self):
""" draw the crosshairs in the center of the screen.
"""
glcolor3d(0, 0, 0)
self.reticle.draw(gl_lines)
def setup_fog():
""" configure the opengl fog properties.
"""
# enable fog. fog "blends a fog color with each rasterized pixel fragment's
# post-texturing color."
glenable(gl_fog)
# set the fog color.
glfogfv(gl_fog_color, (glfloat * 4)(0.5, 0.69, 1.0, 1))
# say we have no preference between rendering speed and quality.
glhint(gl_fog_hint, gl_dont_care)
# specify the equation used to compute the blending factor.
glfogi(gl_fog_mode, gl_linear)
# how close and far away fog starts and ends. the closer the start and end,
# the denser the fog in the fog range.
glfogf(gl_fog_start, 20.0)
glfogf(gl_fog_end, 60.0)
def setup():
""" basic opengl configuration.
"""
# set the color of "clear", i.e. the sky, in rgba.
glclearcolor(0.5, 0.69, 1.0, 1)
# enable culling (not rendering) of back-facing facets -- facets that aren't
# visible to you.
glenable(gl_cull_face)
# set the texture minification/magnification function to gl_nearest (nearest
# in manhattan distance) to the specified texture coordinates. gl_nearest
# "is generally faster than gl_linear, but it can produce textured 图片
# with sharper edges because the transition between texture elements is not
# as smooth."
gltexparameteri(gl_texture_2d, gl_texture_min_filter, gl_nearest)
gltexparameteri(gl_texture_2d, gl_texture_mag_filter, gl_nearest)
setup_fog()
def main():
window = window(width=1800, height=1600, caption='pyglet', resizable=true)
# hide the mouse cursor and prevent the mouse from leaving the window.
window.set_exclusive_mouse(true)
setup()
pyglet.app.run()
if __name__ == '__main__':
main()

我的世界小游戏python源代码包下载地址:

链接: https://pan.baidu.com/s/1gkaherzaenmrxgsu-a4ppg

提取码: rya9

到此这篇关于python实现我的世界小游戏源代码的文章就介绍到这了,更多相关python小游戏源代码内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!