概率生成问题

有一枚不均匀的硬币,要求产生均匀的概率分布
有一枚均匀的硬币,要求产生不均匀的概率分布,如 0.25 和 0.75
利用 rand7() 实现 rand10()

不均匀硬币 产生等概率

现有一枚不均匀的硬币 coin(),能够返回 0、1 两个值,其概率分别为 0.6、0.4。要求使用这枚硬币,产生均匀的概率分布。即编写一个函数 coin_new() 使得它返回 0、1 的概率均为 0.5。

# 不均匀硬币,返回 0、1 的概率分别为 0.6、0.4
def coin():
    return 0 if random.randint(1,10) > 4 else 1

统计抛两次硬币的结果的概率分布:

结果 0 1
0 0.60.6=0.36 0.60.4=0.24
1 0.40.6=0.24 0.40.4=0.16

连续抛两枚硬币得到 0 1 和 1 0 的概率分布是相同的。因此这道题的解法就是连续抛两次硬币,如果得到 0 1,返回 0;如果得到 1 0,返回 1;如果两次结果相同,则重新抛。

以此类推,无论这枚不均匀硬币的概率是多少,都可以用这种方法得到等概率的结果。

ddef coin_new():
    while true:
        a = coin()
        if coin() != a:  
            return a

完整测试代码:

def coin():
    return 0 if random.randint(1,10) > 4 else 1

def coin_new():
    while true:
        a = coin()
        if coin() != a:  
            return a
if __name__ == '__main__':
    a = 0
    b = 0
    n = 100000
    for _ in range(n):
        if coin_new():a += 1
        if coin():b += 1

    print(f"1:{a/n},1:{b/n}")

均匀硬币 产生不等概率

现有一枚均匀的硬币 coin(),能够返回 0、1 两个值,其概率均为 0.5。要求编写一个函数 coin_new(),使得它返回指定的 0、1 概率分布。

# 均匀硬币 
def coin():
    return random.randint(0,1)  

p(0) = 1/4,p(1) = 3/4

对于均匀硬币而言,连续抛两次,得到 0 0、0 1、1 0、1 1 的概率均为 1/4。显然,只需要连续抛两次硬币,如果得到 0 0,返回 0,其他情况返回 1。

def coin_new():
    return coin() or coin()

p(0) = 1/3,p(1) = 2/3

连续抛两次硬币。如果得到 1 1,返回 0;如果得到 1 0 或 0 1,返回 1;如果得到 0 0,继续抛硬币。

def coin_new():
    while true:
        a, b = coin(), coin()
        if a & b: return 0
        if a | b: return 1

p(0) = 0.3,p(1) = 0.7

每抛一次硬币,会得到二进制数的一位,连续抛 4 次硬币,可以等概率生成 [0, 15] 的每个数,记为 x。去掉 [10, 15],剩下 [0, 9] 的每个数依然是等概率的。如果 x ∈ [ 0 , 2 ] x \in [0, 2] x∈[0,2],返回 0; x ∈ [ 4 , 9 ] x \in [4, 9] x∈[4,9],返回 1; x ≥ 10 x ≥ 10 x≥10,重复上述过程。

def coin_new():
    while true:
        x = 0
        for _ in range(4):
            x = (x << 1) + coin()
        if x <= 2: return 0
        if x <= 9: return 1

总结

每抛一次硬币,会得到二进制数的一位,连续抛 k 次硬币,可以等概率生成 [ 0 , 2 k − 1 ] [0, 2^k-1] [0,2k−1] 的每个数在 [ 0 , 2 k − 1 ] [0, 2^k-1] [0,2k−1][ 中,选取 m 个数返回 0,n 个数返回 1,则 0、1 的概率分别为 m m + n \frac{m}{m+n} m+nm​ 、 n m + n \frac{n}{m+n} m+nn​。

关于 k 的选择,最少需要满足 n < = 2 k − 1 n <= 2^k-1 n<=2k−1,n 是生成对应概率分布至少需要多少个不同数字。比如要生成 1/3、2/3 的分布,至少需要 3 个不同数字,则 n = 3, k = 2;要生成 3/10、7/10 的分布,至少需要 10 个数字,则 n = 10, k = 4。

k 最多则没有限制,我们总可以通过抛更多次硬币来解决问题,只需要把无用的数字舍弃即可。但我们的目的是尽可能减少无用数字的比例,因为每次遇到无用数字时,都需要重新生成新的数字。

rand7 生成 rand10

已有方法 rand7() 可生成 1 到 7 范围内的均匀随机整数,试写一个方法 rand10() 生成 1 到 10 范围内的均匀随机整数。

抛硬币可以看作是 rand2(),均匀生成 0、1 两个整数。如何根据 rand2() 生成 rand10()?将每次抛硬币的结果,看作二进制的每一位,就可以得到 [ 0 , 2 k − 1 ] [0, 2^k-1] [0,2k−1] 范围内的均匀随机整数。只需要抛 4 次硬币,就能得到 [0, 15] 范围的整数。返回 [1, 10] 范围的整数,其他情况则重新抛硬币。

def rand10():
    while true:
        x = 0
        for _ in range(4):
            x = x << 1 + rand2()
            
        if 1 <= x <= 10: return x

取 rand7() – 1 作为对应的 7 进制位。每执行 k 次 rand7(),将得到一个 k 位的 7 进制整数,在 [ 0 , 7 k − 1 ] [0, 7^k-1] [0,7k−1] 范围内均匀分布。

只需执行 k = 2 次 rand7(),就可以得到范围为 [0, 48] 的均匀整数:

当 x ∈ [ 1 , 10 ] x \in [1, 10] x∈[1,10] 时返回 x,否则重新计算:

def rand10():
    while true:
        x = (rand7() - 1) * 7 + (rand7() - 1);
        if 1 <= x <= 10: return x

进一步优化

选择 [1, 40] 范围里的数,通过取余运算来得到 [1, 10] 范围的数:

def rand10():
    while true:
        x = (rand7() - 1) * 7 + (rand7() - 1)
        if 1 <= x <= 40:
            return x % 10 + 1

对于上面这 9 个无用数字,计算 x % 40 可以得到 [0, 8] 范围的均匀随机整数。此时再调用一次 rand7(),计算 (x % 40) * 7 + rand7(),这相当于 rand9() * 7 + rand7()。显然,可以得到 [1, 63] 范围的均匀随机整数。这时 [1, 60] 范围里的数都可以用来作取余运算,只有 61、62、63 共 3 个无用数字:

def rand10():
    while true:
        x = (rand7() - 1) * 7 + (rand7() - 1)
        if 1 <= x <= 40:
            return x % 10 + 1   
            
    	x = (x % 40) * 7 + rand7() # 1~63
    	if x <= 60: return x % 10 + 1

对于 61、62、63,再调用一次 rand7(),计算 (x – 61) * 7 + rand7(),相当于 rand3() * 7 + rand7(),可以得到 [1, 21] 范围的均匀随机整数,这时再作取余运算,只有 1 个无用数字(21):

def rand10():
    while true:
        x = (rand7() - 1) * 7 + (rand7() - 1)
        if 1 <= x <= 40:
            return x % 10 + 1   
            
    	x = (x % 40) * 7 + rand7() # 1~63
    	if x <= 60: return x % 10 + 1

        x = (x - 61) * 7 + 7 # 1~21
        if x <= 20: return x % 10 + 1

每次 while 执行的时候,只有 1 个无用数字(21)会被舍弃,重新执行的概率很低。

randm 生成 randn

已知 randm() 可以等概率的生成 [0, m-1] 范围的随机整数,那么执行 k 次,每次都得到 m 进制的一位,可以等概率生成 [ 0 , m k − 1 ] [0, m^k-1] [0,mk−1] 范围的随机整数,记为 x。

randn 至少需要 n 个均匀随机整数,因此只需要取 k,使得 m k − 1 > = n m^k-1 >= n mk−1>=n 即可,此时有多种方式得到 randn:
一种是只在 x ∈ [ 0 , n − 1 ] x \in [0, n-1] x∈[0,n−1] 时返回 x,另一种是利用取余运算,在保证等概率的前提下,尽可能多的利用生成的数字,从而减少舍弃的数字比例,降低 while 重复执行的概率。

到此这篇关于python 概率生成问题案例详解的文章就介绍到这了,更多相关python 概率生成问题内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!