如何用眼睛来控制鼠标?一种基于单一前向视角的机器学习眼睛姿态估计方法。在此项目中,每次单击鼠标时,我们都会编写代码来裁剪你们的眼睛图像。使用这些数据,我们可以反向训练模型,从你们您的眼睛预测鼠标的位置。在开始项目之前,我们需要引入第三方库。

# for monitoring web camera and performing image minipulations
import cv2
# for performing array operations
import numpy as np
# for creating and removing directories
import os
import shutil
# for recognizing and performing actions on mouse presses
from pynput.mouse import listener

首先让我们了解一下pynput的listener工作原理。pynput.mouse.listener创建一个后台线程,该线程记录鼠标的移动和鼠标的点击。这是一个简化代码,当你们按下鼠标时,它会打印鼠标的坐标:

from pynput.mouse import listener
def on_click(x, y, button, pressed):
"""
  args:
    x: the x-coordinate of the mouse
    y: the y-coordinate of the mouse
    button: 1 or 0, depending on right-click or left-click
    pressed: 1 or 0, whether the mouse was pressed or released
  """
if pressed:
print (x, y)
with listener(on_click = on_click) as listener:
  listener.join()

现在,为了实现我们的目的,让我们扩展这个框架。但是,我们首先需要编写裁剪眼睛边界框的代码。我们稍后将在on_click函数内部调用此函数。我们使用haar级联对象检测来确定用户眼睛的边界框。你们可以在此处下载检测器文件,让我们做一个简单的演示来展示它是如何工作的:

import cv2
# load the cascade classifier detection object
cascade = cv2.cascadeclassifier("haarcascade_eye.xml")
# turn on the web camera
video_capture = cv2.videocapture(0)
# read data from the web camera (get the frame)
_, frame = video_capture.read()
# convert the image to grayscale
gray = cv2.cvtcolor(frame, cv2.color_bgr2gray)
# predict the bounding box of the eyes
boxes = cascade.detectmultiscale(gray, 1.3, 10)
# filter out images taken from a bad angle with errors
# we want to make sure both eyes were detected, and nothing else
if len(boxes) == 2:
eyes = []
for box in boxes:
    # get the rectangle parameters for the detected eye
x, y, w, h = box
    # crop the bounding box from the frame
eye = frame[y:y + h, x:x + w]
    # resize the crop to 32x32
eye = cv2.resize(eye, (32, 32))
    # normalize
eye = (eye - eye.min()) / (eye.max() - eye.min())
    # further crop to just around the eyeball
eye = eye[10:-10, 5:-5]
    # scale between [0, 255] and convert to int datatype
eye = (eye * 255).astype(np.uint8)
    # add the current eye to the list of 2 eyes
eyes.append(eye)
  # concatenate the two eye images into one
eyes = np.hstack(eyes)

现在,让我们使用此知识来编写用于裁剪眼睛图像的函数。首先,我们需要一个辅助函数来进行标准化:

def normalize(x):
  minn, maxx = x.min(), x.max()
return (x - minn) / (maxx - minn)

这是我们的眼睛裁剪功能。如果发现眼睛,它将返回图像。否则,它返回none:

def scan(image_size=(32, 32)):
_, frame = video_capture.read()
gray = cv2.cvtcolor(frame, cv2.color_bgr2gray)
boxes = cascade.detectmultiscale(gray, 1.3, 10)
if len(boxes) == 2:
eyes = []
for box in boxes:
x, y, w, h = box
eye = frame[y:y + h, x:x + w]
eye = cv2.resize(eye, image_size)
eye = normalize(eye)
eye = eye[10:-10, 5:-5]
eyes.append(eye)
return (np.hstack(eyes) * 255).astype(np.uint8)
else:
return none

现在,让我们来编写我们的自动化,该自动化将在每次按下鼠标按钮时运行。(假设我们之前已经root在代码中将变量定义为我们要存储图像的目录):

def on_click(x, y, button, pressed):
# if the action was a mouse press (not a release)
if pressed:
# crop the eyes
    eyes = scan()
# if the function returned none, something went wrong
if not eyes is none:
# save the image
      filename = root + "{} {} {}.jpeg".format(x, y, button)
      cv2.imwrite(filename, eyes)

现在,我们可以回忆起pynput的实现listener,并进行完整的代码实现:

import cv2
import numpy as np
import os
import shutil
from pynput.mouse import listener
 
 
root = input("enter the directory to store the images: ")
if os.path.isdir(root):
  resp = ""
while not resp in ["y", "n"]:
    resp = input("this directory already exists. if you continue, the contents of the existing directory will be deleted. if you would still like to proceed, enter [y]. otherwise, enter [n]: ")
if resp == "y": 
    shutil.rmtree(root)
else:
    exit()
os.mkdir(root)
 
 
# normalization helper function
def normalize(x):
  minn, maxx = x.min(), x.max()
return (x - minn) / (maxx - minn)
 
 
# eye cropping function
def scan(image_size=(32, 32)):
  _, frame = video_capture.read()
  gray = cv2.cvtcolor(frame, cv2.color_bgr2gray)
  boxes = cascade.detectmultiscale(gray, 1.3, 10)
if len(boxes) == 2:
    eyes = []
for box in boxes:
      x, y, w, h = box
      eye = frame[y:y + h, x:x + w]
      eye = cv2.resize(eye, image_size)
      eye = normalize(eye)
      eye = eye[10:-10, 5:-5]
      eyes.append(eye)
return (np.hstack(eyes) * 255).astype(np.uint8)
else:
return none
 
 
def on_click(x, y, button, pressed):
# if the action was a mouse press (not a release)
if pressed:
# crop the eyes
    eyes = scan()
# if the function returned none, something went wrong
if not eyes is none:
# save the image
      filename = root + "{} {} {}.jpeg".format(x, y, button)
      cv2.imwrite(filename, eyes)
 
 
cascade = cv2.cascadeclassifier("haarcascade_eye.xml")
video_capture = cv2.videocapture(0)
 
 
with listener(on_click = on_click) as listener:
  listener.join()

运行此命令时,每次单击鼠标(如果两只眼睛都在视线中),它将自动裁剪网络摄像头并将图像保存到适当的目录中。图像的文件名将包含鼠标坐标信息,以及它是右击还是左击。

这是一个示例图像。在此图像中,我在分辨率为2560×1440的监视器上在坐标(385,686)上单击鼠标左键:

级联分类器非常准确,到目前为止,我尚未在自己的数据目录中看到任何错误。现在,让我们编写用于训练神经网络的代码,以给定你们的眼睛图像来预测鼠标的位置。

import numpy as np
import os
import cv2
import pyautogui
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *

现在,让我们添加级联分类器:

cascade = cv2.cascadeclassifier("haarcascade_eye.xml")
video_capture = cv2.videocapture(0)

正常化:

def normalize(x):
  minn, maxx = x.min(), x.max()
return (x - minn) / (maxx - minn)

捕捉眼睛:

def scan(image_size=(32, 32)):
_, frame = video_capture.read()
gray = cv2.cvtcolor(frame, cv2.color_bgr2gray)
boxes = cascade.detectmultiscale(gray, 1.3, 10)
if len(boxes) == 2:
eyes = []
for box in boxes:
x, y, w, h = box
eye = frame[y:y + h, x:x + w]
eye = cv2.resize(eye, image_size)
eye = normalize(eye)
eye = eye[10:-10, 5:-5]
eyes.append(eye)
return (np.hstack(eyes) * 255).astype(np.uint8)
else:
return none

让我们定义显示器的尺寸。你们必须根据自己的计算机屏幕的分辨率更改以下参数:

# note that there are actually 2560x1440 pixels on my screen
# i am simply recording one less, so that when we divide by these
# numbers, we will normalize between 0 and 1. note that mouse
# coordinates are reported starting at (0, 0), not (1, 1)
width, height = 2559, 1439

现在,让我们加载数据(同样,假设你们已经定义了root)。我们并不在乎是单击鼠标右键还是单击鼠标左键,因为我们的目标只是预测鼠标的位置:

filepaths = os.listdir(root)
x, y = [], []
for filepath in filepaths:
x, y, _ = filepath.split(' ')
x = float(x) / width
y = float(y) / height
x.append(cv2.imread(root + filepath))
y.append([x, y])
x = np.array(x) / 255.0
y = np.array(y)
print (x.shape, y.shape)

让我们定义我们的模型架构:

model = sequential()
model.add(conv2d(32, 3, 2, activation = 'relu', input_shape = (12, 44, 3)))
model.add(conv2d(64, 2, 2, activation = 'relu'))
model.add(flatten())
model.add(dense(32, activation = 'relu'))
model.add(dense(2, activation = 'sigmoid'))
model.compile(optimizer = "adam", loss = "mean_squared_error")
model.summary()

这是我们的摘要:

接下来的任务是训练模型。我们将在图像数据中添加一些噪点:

epochs = 200
for epoch in range(epochs):
  model.fit(x, y, batch_size = 32)

现在让我们使用我们的模型来实时移动鼠标。请注意,这需要大量数据才能正常工作。但是,作为概念证明,你们会注意到,实际上只有200张图像,它确实将鼠标移到了你们要查看的常规区域。当然,除非你们拥有更多的数据,否则这是不可控的。

while true:
  eyes = scan()
if not eyes is none:
      eyes = np.expand_dims(eyes / 255.0, axis = 0)
      x, y = model.predict(eyes)[0]
      pyautogui.moveto(x * width, y * height)

这是一个概念证明的例子。请注意,在进行此屏幕录像之前,我们只训练了很少的数据。这是我们的鼠标根据眼睛自动移动到终端应用程序窗口的视频。就像我说的那样,这很容易,因为数据很少。有了更多的数据,它有望稳定到足以以更高的特异性进行控制。仅用几百张图像,你们就只能将其移动到注视的整个区域内。另外,如果在整个数据收集过程中,你们在屏幕的特定区域(例如边缘)都没有拍摄任何图像,则该模型不太可能在该区域内进行预测。

到此这篇关于opencv实现眼睛控制鼠标的实践的文章就介绍到这了,更多相关opencv 眼睛控制鼠标内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!