目录

内容介绍

以 python 使用 关联规则 简单举例应用关联规则分析。

关联规则 也被称为购物篮分析,用于分析数据集各项之间的关联关系。

一般应用场景

关联规则分析:最早的案例啤酒和尿布;据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起;结果这两个品类的销量都有明显的增长;分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品。

后来也引申到不同的应用场景,分析变量与变量之间的关系情况分析。总体来说分析的都是类别变量。

关联规则实现

import pandas as pd
from apriori_new import * #导入自行编写的apriori函数
import time #导入时间库用来计算用时
import re
import random
import pandas as pd
# 自定义关联规则算法
def connect_string(x, ms):
    x = list(map(lambda i: sorted(i.split(ms)), x))
    l = len(x[0])
    r = []
    # 生成二项集
    for i in range(len(x)):
        for j in range(i, len(x)):
            #      if x[i][l-1] != x[j][l-1]:
            if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][
                l - 1]:  # 判断数字和字母异同,初次取字母数字不全相同(即不同症状(字母),或同一证型程度不同(数字))
                r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]]))
    return r
# 寻找关联规则的函数
def find_rule(d, support, confidence, ms=u'--'):
    result = pd.dataframe(index=['support', 'confidence'])  # 定义输出结果
    support_series = 1.0 * d.sum() / len(d)  # 支持度序列
    column = list(support_series[support_series > support].index)  # 初步根据支持度筛选,符合条件支持度,共 276个index证型
    k = 0
    while len(column) > 1:  # 随着项集元素增多 可计算的column(满足条件支持度的index)会被穷尽,随着证型增多,之间的关系会越来越不明显,(同时发生可能性是小概率了)
        k = k + 1
        print(u'\n正在进行第%s次搜索...' % k)
        column = connect_string(column, ms)
        print(u'数目:%s...' % len(column))
        sf = lambda i: d[i].prod(axis=1, numeric_only=true)  # 新一批支持度的计算函数
        len(d)
        # 创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
        # 依次对column每个元素(如[['a1', 'a2'], ['a1', 'a3']]中的['a1', 'a2'])运算,计算data_model_中对应该行的乘积,930个,若['a1', 'a2']二者同时发生为1则此行积为1
        d_2 = pd.dataframe(list(map(sf, column)),index=[ms.join(i) for i in column]).t  # list(map(sf,column)) 276x930  index 276
        support_series_2 = 1.0 * d_2[[ms.join(i) for i in column]].sum() / len(d)  # 计算连接后的支持度
        column = list(support_series_2[support_series_2 > support].index)  # 新一轮支持度筛选
        support_series = support_series.append(support_series_2)
        column2 = []
        for i in column:  # 遍历可能的推理,如{a,b,c}究竟是a+b-->c还是b+c-->a还是c+a-->b?
            i = i.split(ms)  # 由'a1--b1' 转化为 ['a1', 'b1']
            for j in range(len(i)):  #
                column2.append(i[:j] + i[j + 1:] + i[j:j + 1])
        cofidence_series = pd.series(index=[ms.join(i) for i in column2])  # 定义置信度序列
        for i in column2:  # 计算置信度序列  如i为['b1', 'a1']
            # i置信度计算:i的支持度除以第一个证型的支持度,表示第一个发生第二个发生的概率
            cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])]
        for i in cofidence_series[cofidence_series > confidence].index:  # 置信度筛选
            result[i] = 0.0  # b1--a1    0.330409  a1--b1    0.470833,绝大部分是要剔除掉的,初次全剔除
            result[i]['confidence'] = cofidence_series[i]
            result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
    result = result.t.sort_values(by=['confidence', 'support'],ascending=false)  # 结果整理,输出,先按confidence升序,再在confidence内部按support升序,默认升序,此处降序
    return result

关联规则应用举例

sku_list = [
    '0000001','0000002','0000003','0000004','0000005',
    '0000006','0000007','0000008','0000009','0000010',
    '0000011','0000012','0000013','0000014','0000015',
    '0000016','0000017','0000018','0000019','0000020',
    'a0000001','a0000002','a0000003','a0000004','a0000005',
    'a0000006','a0000007','a0000008','a0000009','a0000010',
    'a0000011','a0000012','a0000013','a0000014','a0000015',
    'a0000016','a0000017','a0000018','a0000019','a0000020',
]
# 随机抽取数据生成列表
mat = [ random.sample(sku_list, random.randint(2,5))  for i in range(100)]
data = pd.dataframe(mat,columns=["a","b","c","d","e"])
data = pd.get_dummies(data) # 转换类别变量矩阵
data = data.fillna(0)

  • 支持度:表示项集{x,y}在总项集里出现的概率。
  • 置信度:表示在先决条件x发生的情况下,由关联规则”x→y“推出y的概率。表示在发生x的项集中,同时会发生y的可能性,即x和y同时发生的个数占仅仅x发生个数的比例。
support = 0.01 #最小支持度
confidence = 0.05 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如a--b。需要保证原始表格中不含有该字符
start = time.clock() #计时开始
print(u'\n开始搜索关联规则...')
print(find_rule(data, support, confidence, ms))
end = time.clock() #计时结束
print(u'\n搜索完成,用时:%0.2f秒' %(end-start))

以上就是总结分析python数据化运营关联规则的详细内容,更多关于python数据化运营关联规则的资料请关注www.887551.com其它相关文章!